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Abstract. In order to design a quantum circuit that performs a desired

quantum computation, it is necessary to find a decomposition of the
unitary matrix that represents that computation in terms of a sequence
of quantum gate operations. To date, such designs have either been found
by hand or by exhaustive enumeration of all possible circuit topolo_es. In
this paper we propose an automated approach to quantum circuit design
using search heuristics based on principles abstracted from evolutionary
genetics, i.e. using a genetic programming algorithm adapted specially
for this problem. We demonstrate the method on the task of discovering
quantum circuit designs for quantum teleportation. We show that to find
a given known circuit design (one which was hand-crafted by a human),
the method considers roughly an order of magnitude fewer designs than
naive enumeration. In addition, the method finds novel circuit designs

superior to those previously known.

1 Introduction: Quantum Circuit Design

1.1 Quantum Computation

Quantum computation is an emerging area of study, which considers the pro-
ceasing of quantum information, rather than the familiar classical information.

The state of a quantum computer is defined as a superposition of qubits. A com-

putation on such a computer is the unitary evolution of this state, i.e. the action
of a unitary matrix operator U upon the state I_). More detailed background

on the framework of quantum information processing may be found in [12], [13],

and [14].

1.2 Quantum Gates and Circuits

Much recent work has been devoted to the construction of unitary transforma-

tions from sequences of more primitive ones. Deutsch ([5]) introduced the notion

that such simple unitary operators can be thought of as elementary gates per-

forming logical operations, and more sophisticated operators can be thought of
as circuits composed of gates, in analogy to the standard formalism for classical
Boolean electrical circuits. This is sometimes called the network model of com-

putation. Following the classical computation line of analysis, in which certain
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discreteentity.An important complicationenterswhen we wish to allowtopolo-

giesto have differentsizes,i.e.numbers ofgates,which we would preferto leave

unspecifiedwhen automating circuitdesign,leavingthe algorithm to find the

appropriate size.The second isthe assignment of anglevalueswithin the gates,

ifapplicable;when our gate selectionset includesgateswhich are actuallypara-

metric familiesofgates,there axe continuous parameters tobe found.

The paper of DiVincenzo and Smolin ([6])discussednumerical optimization

forthe discoveryof parameters fortwo-qubit gates,within a fixedcircuittopoi-

ogy, which lead to a desiredunitary computation. They used thistechnique to

show that certaingates of interest(the Toffoligate and arbitrarythree-qubit

gates)could themselves be representedas circuitsoftwo-qubit gates,by finding

the necessary two-qubit gate parameters. In order to find the necessary circuit

topologies,however, allpossibletopologieswere tried.The focus of that paper

was to show the possibilityofdecomposing particularcomputations .intocircuits

of simpler gates;thus exhaustive enumeration was suffcientas a tool to prove

the point.We are interestedhere ina practicaland generalmethod foreffciently

findingcorrectcircuittopologiesfor any given operator,in other words avoid-

ing exhaustive enumeration. We return to the continuous aspect of the search

problem laterin Section6.

3 Genetic Programming: A Set of Search Heuristics

3.1 Why Genetic Programming?

Our search problem makes a diffcultdemand on any search method we might

think to employ. First,the search method must be amenable to problems in

which itisdiffcultto characterizethe structureof the solutionspace exactly.To

clarifythispoint,considerthatour formulationofthe problem leavesthe form of

the targetunitary transformationU completely unspecified;no deep knowledge

ofU's substructure,behavior,relationshiptothe gatesused,or nature otherwise

can be used to advantage toeliminateinvalidpossibilitiesinthe searchproblem.

This very generalstance isappropriateforquantum circuitdesignsincehuman

techniques and intuitionsabout quantum circuitshave not reached a mature

stage yet;once specificclassesofquantum circuitscan be delineated,itmay be

fruitfulto designsearchmethods which takeadvantage oftheirextraconstraints.

Furthermore, the quantum circuitdesign problem isone inwhich itisdifficult

to evaluate the best next localmove to make at any given point in the search;
the entiresolutionmust then be evaluated in order to evaluate the effectof a

localchange in a circuitcandidate.Genetic programming isappropriate in this

settingsince itreliesonly on evaluationsofentirecircuits.

Second, it must be capable of consideringsolutionstructuresof variable

length.This iscrucialifitistohave any hope of findingsmalldesigns;itmust be

given the latitudeto exploresolutioncandidates of differentsizes.A particular

set ofsearch heuristics,the so-cailedgeneticprogramming method [11],has the

distinctionof being the only search technique having the capabilityof search-

ing over solutionsof varyingstructureand size.Genetic programming isa type
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of 9enetic algorithm [8], which in turn is a type of stochastic hill-climbing (0),

or "go with the winners" algorithm ([1]), along with simulated annealing ([9]).

Genetic programming is the kind of genetic algorithm which is concerned with
non-fixed-length topological structures, rather than the simpler case of fixed-

length solutions.

3.2 The Parts of Genetic Programming

Genetic programming is a simple set of search heuristics based loosely on the

principles of evolutionary genetics. One of its most distinctive traits is that it is

a population-based method, or one which maintains multiple solution candidates
simultaneously, whose 'evolution' paths may interact with each other. In partic-

ular, they may trade substructures in an operation cMled "crossover"., in analogy

to sexual reproduction. The method is heavily stochastic, sometimes perform-

ing random perturbations on solution candidates ("mutationF), and greedily

selecting the current best solutions to continue pursuing via random sampling

weighted by solution quality ("fitness", _surviual of the fittest"). A typical ge-

netic programming algorithm has this form:

Initialize population with random solutions.

Until

1.

2.

3.

the stopping criterion has been reached,

Evaluate the quality of each solution in the population.

Sample from the population, .eighted by solution quality, to form the

'breeding pool _ --
For each member of this subset of the population, choose one of the

following operations to perform on it:

a. Mutation (choose .i_h probability p(M))

b. Crossover (choose .ith probability p(C); requires a partner)

Each iteration of the algorithm is called a "generation".

Because its directional guidance is based on evaluations of entire solutions, all

that is necessary to apply the algorithm to a problem is a well-defined measure of

solution quality; it is thus amenable to problems in which it is difficult to evaluate
the best local move to make at each partial solution (such as the circuit design

problem). The main power of the method, which distinguishes it from simple

stochastic local perturbation, is in the crossover operation. If the problem is one

in which we expect substructures to contain localized information, i.e. represent

meaningful subsolutions (an analogy to subroutines of a program is useful here),

then crossover has a hope of successfully transferring a subsolution to a different

solution, perhaps increasing its overall quality. In the circuit design problem, it
seems reasonable to expect that transferable snbcircuits exist. Crossover is also

the main mechanism for obtaining topology candidates of different sizes.
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4 A Genetic Programming Algorithm for Quantum

Circuit Design

For this investigation we designed a genetic programming algorithm tailored

specifically for the problem of quantum circuit design.

m

I

m
sins

Fig. I. An example circuit.

4.1 Representation

Circuit Representation. An anonymous quantum circuitisshown in Figure

I as an example of the representationwe use. Itisrepresentedas the following

nested listdata structure,which encodes with each circuitelement, itsname,

parameters ifany, and embedding (the wires to which itisconnected, followed

by the number ofwires inthe circuit:three in thiscase):

,paramsO, {2,3;3}

,parar_, {2;3}

,param#O, {I;3}'

, paramsO, (3; 3}

(1)
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Gate Selection Set. The algorithm chooses gates from a prespecified selection

set. These gates may have unspecified continuous angle parameters associated

with them, which must be adjusted by the search algorithm. The gates may

also be fixed, or parameterless, gates. In a general setting where little is known

about the target transformation, it is sensible to select the gate set such that

it forms a universal gate set. It may also be sensible to choose an overcomplete

set, one which includes a number of gates beyond a computation-universal core

subset. This may be useful for obtaining more compact representations, yet may

be more costly than having a smaller number of gate types, depending on the

technological practicalities of quantum hardware manufacture which hold at the

time of the design. An undercomplete set may make sense when some known

properties of the target computation allow it.

4.2 Evaluation

Solution Quality Measure. To evaluate the quality of a circuit ca_ndidate, we

compare its matrix form S to the target matrix U using the objective function

2 N 2 N

/(s, u) = _, _, lU,_- s,_l,s, u _ u(2") (2)
i=1 j=l

This is similar to the objective function used in [6]:

2_" 2N

/(s, u) = _, _, IU,_- s,, r-,s,u c u(2_) (3)
i=I j=l

We call f the fitness or the discrepancy;, our goal is to find circuits which

minimize the discrepancy between the circuits in our population and the target.

When f = O, we have found a circuit which implements U exactly. Otherwise,

we have found an approximation to U.

We regard the most sensible evaluation measure as an open question. A

paper by Knill [10] considers several measures, many of which are not practically

computable, sincethey take intoaccount allpossiblestateson which the operator

may act.One requirement of the measure chosen isthat ityieldsa minimum

(maximum) when S = U; thisproperty istrue of allof Knill'smeasures. There

isa degree of arbitrarinessin specifyingthe proper qualitativebehavior of the

metric when S differsfrom U.

While a measure such as f allowsthe discoveryof approximate circuitsin a

well-definedway, in thispaper we focusonly upon unitaryoperations which we

can represent exactly.

4.3 Selection

Selection is the choosing of a subset from the population to modify in some way.

Sampling is weighted by a factor derived from a circuit candidate's discrepancy

score, in the way described below, and is performed at the beginning of each

generation.
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A Ranking-based Scheme. Rather than translatethe discrepancyscore of a

circuitintoitsselectionprobabilitysuch that the latterisdirectlyproportionalto

the score,we insteadfirstorder the circuitsaccording totheirdiscrepancies,then

determine selectionprobabilitiesbased directlyon the resultingrankings.This

procedure has the effectof desensitizingthe processwith respectto the exact

discrepancydistribution,which tends to exhibitextreme ratiosbetween the best

candidates and the worst ones;we would liketodeemphasize such differencesin

order to avoid complete domination of the selectionprocessby a few candidates

too earlyinthe evolution,which corresponds to entrapment ina localoptimum.

Selection Probability Distribution. The circuitsareranked from I to N, the

number of circuitsin the pol_ulation,1 denoting the best.Probabilitiesare de-

finedwith which toselectmembers ofthe population forbreeding (i.e.crossover),

mutation, and otheroperationswhich yieldmodified solutioncandidates.We de-

sirea functionalform yieldingprobabilitiesof selectionwhich decrease as the

ranking increases(i.e.gets worse),choosing a quadratic form as a compromise

between a form yieldinga very weak selectioneffect(which makes the algorithm

closerto a purely random search)such a lineardecrease,and a form yielding

a very aggressiveselectioneffect(making the algorithm more 'greedy',or sus-

ceptibleto short-term gains which might cause itto become trapped ina local

optimum), such as an exponentialdecrease.

The probabilityP(r) ofselectingthe circuithaving rankingr isthen ar2+br+

c forsome a,b,and c.To determine some valuesforthesevariableswe setup some

constraints,namely that P(r) isa true probability,i.e._"_f=lat2 + br+ c -- I,

that the lowest ranked member isnever picked,i.e.aN _"+ bN + c --0,and that

the derivativeof the probabilitygoes to zero as r goes to N, guaranteeing that

the probabilityfunctionis monotonic decreasing.This set of equations yields

valuesof a,b,and c such that

6N 2

P(r)= I-3N+2N 2r +

6 12
r - (4)

N(1- 3N +2N _) 1- 3N+2N _"

To derive the new generation's population from the last generation's mem-

bers, selection from the described probability distribution is performed N times

with replacement; note that the population size stays constant and that on av-

erage circuits are multiply represented in the next generation a number of times

proportional to their fitness. This process yields the parents which are fit enough

to draw upon for the various modifications (i.e. search operations) that follow.

To finish the activity of this generation, each parent is replaced by a new cir-

cuit resulting from an operation performed on it; the operation to be performed
on each circuit is chosen from a discrete probability distribution determined by

the user of the algorithm.
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4.4 Search Operators

Mutation. Mutation isthe random perturbationof a singlegate,chosen uni-

formly at random from the gates withinthe operand circuit.In the case offixed

gates,i.e.gates without parameters which can vary,the selectedgate'sembed-

ding ischanged by uniformly randomly selectingnew connecting linesto replace

the old ones.

Substitution. Substitutionissimilarto mutation, but isthe replacement of

an existinggate chosen uniformly randomly from the gates within the operand

circuit,with anotherone selectedfrom the gate selectionsetuniformly randomly.

Though replacement can be achieved through an appropriateinsertion-deletion

pairof operations,described below, itsinclusionas a separateoperation allows

itsprobabilityof occurence to be more explicitlycontrolled.

Crossover. The circuit resulting from the crossover, or mating, operation is

obtained by considering two parent circuits, A and B. A split point is chosen

uniformly randomly somewhere along each of the two parent circuits. The circuit

resulting from crossover has the first part of the circuit A attached to the second

part of the circuit B, or the first part of the circuit B attached to the second

part of the circuit A, each with probability 0.5. Note that crossover allows the

size of the resulting circuit to change from that of either A or B.

Transposition. Transposition is an operation obtained by generalizing crossover;

its result is also defined by considering two parents A and B. A subcircuit is first

defined by the selection of beginning and end points in parent A. The beginning

point is chosen uniformly randomly along the length of A, and the end point is

chosen uniformly randomly from the region between the that point and the end

of A. The resulting circuit is found by inserting the subcircuit at a uniformly

randomly chosen point along the length of parent circuit B. This also allows the

size of the resulting circuit to change from that of either A or B.

Insertion. Insertion is similar to transposition, except that only one parent

need be considered; a randomly constructed sequence of gates is inserted at a

random point in the parent, resulting in a larger circuit. The beginning and end

points of a subcircuit of the parent are chosen as described for the transposition

operator, only so that the length of this subcircuit can be used as the length

of the random gate sequence to be inserted. This sequence is constructed by

choosing uniformly randomly from the gate selection set the described number

of gates.

Deletion. Deletion is the inverse of insertion, in that a random subcircuit is

chosen from within the parent; this sequence is deleted from the parent, resulting

in a smaller circuit.
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5 Experimental Results: Quantum Teleportation Circuits

Quantum teleportation has been identified as an important and interesting ap-

plication of nonlocal effects in quantum mechanics [3]. Brassard has presented
a circuit for the 'send' and 'receive' halves of quantum teleportation in [4]. This

circuit is compact, requiring only 4 gates in the 'send' subcircuit and 6 in the
'receive' subcircuit. It is shown in Figure 2. The gate definitions can be found in

the example circuit shown in 1 and Figure 1.

...........
! I

I .L lp

Alico

"i" '"' Ti'"
i- t
:T I li
! ! •

Bob

Fig. 2. The quantum teleportation circuit - 'send' and 'receive' parts.

We chose to demonstrate the search algorithm on the computation matrix

generated by this circuit, primarily for its general interestinguess. Its small size

gives the advantage of tractability in the algorithm experimentation phase. Also,
because we start with a circuit to obtain the target unitary transform, we know

that a "compact circuit implementation exists for the problem. We can analyze

the computational resources our search method requires to reproduce the hand-

designed circuit. As discussed in Section 4.2, using a problem for which an exact
circuit representation is known to exist for the gate selection set used avoids the
need to consider the appropriateness of the particular fitness measure being used

to score inexact circuits.

5.1 The 'Send' Circuit

The algorithm was given the send circuit's computation matrix and a gate se-
lection set consisting of L, K, and XOB.. 10 runs were performed, each requiring

a different number of generations to find a correct circuit, as follows: 9, 26, 16,

10, 31, 11, 20, 55, 36, 50.26.4 generations were required on average.
In each case a circuit was found implementing the given computation exactly;

although most were different from the original human-designed circuit, all had

4 gates and included at least one each of the L, B., and XOl:t gates (thus none
was necessarily any better than the original circuit). The variance of the number

of generations required to find a zero-discrepancy circuit is large, owing to the

heavily stochastic nature of the algorithm.

A population size of 100 circuit candidates was used. This is the number of
circuit solutions which must be evaluated upon each generation of the algorithm.
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Thus, on average, about 2,640 circuits are evaluated for this problem before an
answer is found.

By comparison to exhaustive enumeration, the number of possible circuit
topologies for this problem, knowing the number of gates to consider in advance,
can be simply computed as follows: With 3 circuit lines, there are 3 ways to
embed the L gate, 3 ways to embed the R gate, and or (]) = 6 ways to embed
the XOR gate, yielding 3 + 3 + 6 = 12 different choices for each gate possibility.
If we fix the topology size we consider to 4 gates, there are 124 = 20,736 dif-
ferent possible topologies to consider for this problem, using a naive exhaustive
approach. Since our search method actually considers circuits of many different
sizes, a fair comparison would have to take into account every size class of circuit
up to some fairly high number. Our method considered circuits at least as large
as 13 gates; note that there are 12 Is > 1014 circuits having 13 gates!

We note here that this number does not take into account symmetries and

other structure in this search problem, several of which are considered in [6].

Even accounting for these effective reductions of the search space, the compu-
tational advantage of a stochastic approach such as the one proposed is still
quite significant. Our method may be also be able to take advantage of such
information for even greater search efficiency.

Figure 3 shows a typical plot of the average circuit discrepancy over the
population at each generation for this problem. The dots on the lower portion
of the graph indicate the discrepancy of the best circuit(s) in the population at
each generation.

0.4
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_0.2

0.1
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090O
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Fig. 3. Typical evolution plot.

5.2 The 'Receive' Circuit

Experiments with the 'receive' part of the circuit demonstrate a further advan-
tage of this approach to automated circuit design beyond achieving a significant
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savings in time and computational resources. The flexibility and generality of our
approach allows the human user to select a gate set of interest and see whether
interesting circuits using those gates are found by the search technique. This

type of automated search has the potential to find circuits which are difficult for
even resourceful and expert human circuit designers to find. This is true espe-
cially when a large number of gates is involved; however this small but practical
circuit example illustrates that even modest combinatorial problems are very
difficult to find optimal answers for, when unaided by computer methods.

Rather than the original set of gates used in [4] for this circuit, consisting of
S, T, and XOR, the genetic programming algorithm was given the gate selection
set used above, consisting of L, R, and XOR. One of the resulting exact circuits

is shown in Figure 4. Comparing this to the original 'receive' part of the human-
designed circuit shown in Figure 2, it is clear that the new circuit is smaller (4
gates versus 6), and that the overall tdeportation circuit is more elegant since
it requires only 3 types of gates, L, R, and XOR, rather than 5 now that S and
T are no longer needed.

Fig.4.An efficientcircuitfoundby thesearchmethod.

6 Discussion

6.1 Genetic Programming Search as a Tool

At themoment, geneticprogramming'sabilitytoworkwithstructuresofvarying

sizesmakes ittheonlytoolavailable.Itsotherprimarystrengthisitseffective-

nessforopaque problems,where searchmoves aredifficultto evaluatewithout

consideringtheireffecton theentiresolution.Ratherdisappointingly,however,
themethod'ssearchheuristicsarenotwell-understoodformally.Forexample,is-

suesofconvergence,estimatedrun-time,optimalparametersettings,and behav-

iordependenceon problemcontextremainempiricalissues.Aldousand Vazirani

provideone way inwhich tounderstandgeneticalgorithmsingeneral,placing
them withsimulatedannealingintheclassof"go withthewinners"algorithms

([I]).However,thisframeworkaddressesonlythe 'survivalofthefittest'aspect
ofgeneticalgorithms,not theeffectofthecrossoveroperation,which isone of

thehallmarksofgeneticalgorithms.While much has beenwrittenaboutgenetic
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algorithms,most analyseshave been empiricalratherthan formal.Genetic pro-

gramming, dealing with variable-lengthstructures,isalsosurelysubsumed by

some more generalmodel which can be understood formally- unfortunatelythis
has not yet arrived.

On the positiveside,itsflexibleframework allowsthe practitionerto plug in

hisor her own heuristics,encoding any priorknowledge ofthe problem the user

may have (forexample, regardingthe sizeof the circuitor the types ofgates to

use).The specifiablegate selectionset allowsthe specificationof only the gates
availableto the user.

6.2 Extension to Continuous Case

The proposed search method" can be extended to allow the inclusionof contin-

uous, or parametrised, gates in the gate selectionset,as opposed to the fixed

gates used in these experiments.This capabilityrequiresnecessitatesgreater

computational effortsincean optimizationmust be performed to tune the con-

tinuousgate parameters of each circuitcandidate such that the discrepancy is

minimized given the circuit'sdiscretetopology.However, the abilityto incorpo-

rate continuous gates holds the promise of more compact circuitsolutions,as

well as better circuitapproximations where necessary.Experiments elucidating

thisapproach, as well as severalother potentiallypowerful extensions,willbe
described in futurereports.

7 Conclusions

In this paper we have formalized the problem of automated quantum circuit de-

sign as a search problem. We proceeded to propose a search method tailored for

this problem. We then demonstrated its usefulness by showing that it is com-

putationally more ef_cient than naive enumeration. Finally, we demonstrated

that it is capable of discovering useful circuits even when the number of gates
considered is small, as exemplified by a novel circuit found by our algorithm for
quantum teleportation.
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